论文标题

量子辅助的特征索

Quantum Assisted Eigensolver

论文作者

Bharti, Kishor

论文摘要

我们提出了一种杂交量子古典算法,用于近似哈密顿量的基态和基态能量。一旦确定了安萨兹(Ansatz),该算法的量子部分涉及两个重叠矩阵的计算。算法的量子部分的输出被用作经典计算机的输入。该算法的经典部分是一个具有单个二次相等性约束的二次约束二次程序。与变异量子本质量算法不同,我们的算法没有任何经典的量词反馈回路。使用凸松弛技术,我们为经典优化程序提供了有效计算的下限。此外,使用Bar-On等人的结果。 (优化理论与应用杂志,82(2):379--386,1994),我们提供了足够的条件,使局部最低限度成为全球最低限度。求解器可以将这种条件作为停止标准。

We propose a hybrid quantum-classical algorithm for approximating the ground state and ground state energy of a Hamiltonian. Once the Ansatz has been decided, the quantum part of the algorithm involves the calculation of two overlap matrices. The output from the quantum part of the algorithm is utilized as input for the classical computer. The classical part of the algorithm is a quadratically constrained quadratic program with a single quadratic equality constraint. Unlike the variational quantum eigensolver algorithm, our algorithm does not have any classical-quantum feedback loop. Using convex relaxation techniques, we provide an efficiently computable lower bound to the classical optimization program. Furthermore, using results from Bar-On et al. (Journal of Optimization Theory and Applications, 82(2):379--386, 1994), we provide a sufficient condition for a local minimum to be a global minimum. A solver can use such a condition as a stopping criterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源