论文标题

具有多个知识源的注意力源可从CT图像检测到COVID-19

An Attention Mechanism with Multiple Knowledge Sources for COVID-19 Detection from CT Images

论文作者

Nguyen, Duy M. H., Nguyen, Duy M., Vu, Huong, Nguyen, Binh T., Nunnari, Fabrizio, Sonntag, Daniel

论文摘要

到目前为止,冠状病毒SARS-COV-2造成了85万多人的死亡,并在120多个国家中感染了超过2700万人。除了主要聚合酶链反应(PCR)测试外,基于计算机断层扫描(CT)扫描可以自动识别阳性样品可以在Covid-19的早期诊断中提出一个有希望的选择。最近,基于CT扫描,越来越多地利用深层网络进行COVID-19诊断。尽管这些方法主要集中于引入新颖的体系结构,转移学习技术或构建大规模数据,但我们提出了一种新型策略,通过利用与医生判断相关的多个有用的信息来源来提高几个基线的性能。具体而言,从学习网络中提取的受感染区域和热图通过学习过程中的注意机制与全球图像集成在一起。该过程不仅使我们的系统更加强大,还可以指导关注局部病变区域的网络。与最近的基线相比,广泛的实验表明了我们方法的出色性能。此外,我们博学的网络指导为医生提供了可解释的功能,因为我们可以理解灰色盒模型中输入和输出之间的联系。

Until now, Coronavirus SARS-CoV-2 has caused more than 850,000 deaths and infected more than 27 million individuals in over 120 countries. Besides principal polymerase chain reaction (PCR) tests, automatically identifying positive samples based on computed tomography (CT) scans can present a promising option in the early diagnosis of COVID-19. Recently, there have been increasing efforts to utilize deep networks for COVID-19 diagnosis based on CT scans. While these approaches mostly focus on introducing novel architectures, transfer learning techniques, or construction large scale data, we propose a novel strategy to improve the performance of several baselines by leveraging multiple useful information sources relevant to doctors' judgments. Specifically, infected regions and heat maps extracted from learned networks are integrated with the global image via an attention mechanism during the learning process. This procedure not only makes our system more robust to noise but also guides the network focusing on local lesion areas. Extensive experiments illustrate the superior performance of our approach compared to recent baselines. Furthermore, our learned network guidance presents an explainable feature to doctors as we can understand the connection between input and output in a grey-box model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源