论文标题

随机输出反馈MPC带有间歇性观察

Stochastic output feedback MPC with intermittent observations

论文作者

Yan, Shuhao, Cannon, Mark, Goulart, Paul J.

论文摘要

本文设计了模型预测控制(MPC)定律,用于具有随机添加性干扰和嘈杂测量的约束线性系统,从而最大程度地减少了折扣成本,但受期望约束的折扣。假定传感器数据以已知概率丢失。考虑到由Bernoulli过程建模的数据损失,我们将预测的控制策略作为未来观察的仿射功能进行参数,并获得凸线性季度最佳控制问题。确保约束满意度和折现成本约束,而不会对扰动和噪声输入的分布施加界限。此外,如果折现因子采用适当的值,则平均长期未交流的闭环成本显示为有限。我们分析了拟议的控制定律的鲁棒性,以在传感器数据的到达概率中可能的不确定性,并将这些不确定性对约束满意度和折现成本的影响限制。提供数值模拟以说明这些结果。

This paper designs a model predictive control (MPC) law for constrained linear systems with stochastic additive disturbances and noisy measurements, minimising a discounted cost subject to a discounted expectation constraint. It is assumed that sensor data is lost with a known probability. Taking into account the data losses modelled by a Bernoulli process, we parameterise the predicted control policy as an affine function of future observations and obtain a convex linear-quadratic optimal control problem. Constraint satisfaction and a discounted cost bound are ensured without imposing bounds on the distributions of the disturbance and noise inputs. In addition, the average long-run undiscounted closed loop cost is shown to be finite if the discount factor takes appropriate values. We analyse robustness of the proposed control law with respect to possible uncertainties in the arrival probability of sensor data and we bound the impact of these uncertainties on constraint satisfaction and the discounted cost. Numerical simulations are provided to illustrate these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源