论文标题
使用深层的对抗网络标准器,随着时间的推移预见了大脑图演变
Foreseeing Brain Graph Evolution Over Time Using Deep Adversarial Network Normalizer
论文作者
论文摘要
将大脑进化视为一个复杂的高度相互连接的系统,被广泛建模为图,对于在健康和疾病中不同感兴趣的不同解剖区域(ROI)之间的动态相互作用至关重要。有趣的是,文献中几乎没有大脑图演化模型。在这里,我们设计了一个对抗性的大脑网络标准器,用于表示每个大脑网络作为固定中心人口驱动的连接模板的转换。相对于固定参考,这种图形归一化为可靠地识别在基线时间点上测试样本的最相似训练样本(即脑形图)的方式铺平了道路。然后,将通过选定的训练图及其相应的进化轨迹跨越测试进化轨迹。我们将预测框架以几何深度学习为基础,该框架自然地在图表上运行并很好地保留了它们的拓扑特性。具体而言,我们提出了第一个基于图的生成对抗网络(GGAN),该网络不仅学会了如何相对于固定的连接脑模板(CBT)将大脑图正常化(即,有选择地捕获大脑种群中最常见的特征的脑模板),还可以学习脑图的高阶表示,也称为embddings。我们使用这些嵌入来计算训练和测试对象之间的相似性,这使我们能够在基线时间点选择最接近的训练对象,以预测测试脑图随时间的演变。一系列针对几种比较方法的基准表明,我们提出的方法使用单个基线时间点实现了脑疾病进化的最低预测误差。我们的GGAN代码可从http://github.com/basiralab/ggan获得。
Foreseeing the brain evolution as a complex highly inter-connected system, widely modeled as a graph, is crucial for mapping dynamic interactions between different anatomical regions of interest (ROIs) in health and disease. Interestingly, brain graph evolution models remain almost absent in the literature. Here we design an adversarial brain network normalizer for representing each brain network as a transformation of a fixed centered population-driven connectional template. Such graph normalization with respect to a fixed reference paves the way for reliably identifying the most similar training samples (i.e., brain graphs) to the testing sample at baseline timepoint. The testing evolution trajectory will be then spanned by the selected training graphs and their corresponding evolution trajectories. We base our prediction framework on geometric deep learning which naturally operates on graphs and nicely preserves their topological properties. Specifically, we propose the first graph-based Generative Adversarial Network (gGAN) that not only learns how to normalize brain graphs with respect to a fixed connectional brain template (CBT) (i.e., a brain template that selectively captures the most common features across a brain population) but also learns a high-order representation of the brain graphs also called embeddings. We use these embeddings to compute the similarity between training and testing subjects which allows us to pick the closest training subjects at baseline timepoint to predict the evolution of the testing brain graph over time. A series of benchmarks against several comparison methods showed that our proposed method achieved the lowest brain disease evolution prediction error using a single baseline timepoint. Our gGAN code is available at http://github.com/basiralab/gGAN.