论文标题
平衡分形套件上的最小riesz能量
Minimal Riesz energy on balanced fractal sets
论文作者
论文摘要
我们调查了最小$ n $ n $ n $ point riesz $ s $ E-Energy的渐近行为,其分形的非全能维度,并具有代数依赖的收缩比。对于$ s $比集合$ a $的尺寸大,我们证明了最小$ n $ n $ n $ n $ n $ n $ s $ s $ a $ a $的渐近行为,但我们表明一般的渐近行为不存在。
We investigate the asymptotic behavior of minimal $N$-point Riesz $s$-energy on fractal sets of non-integer dimension, with algebraically dependent contraction ratios. For $s$ bigger than the dimension of the set $A$, we prove the asymptotic behavior of the minimal $N$-point Riesz $s$-energy of $A$ along explicit subsequences, but we show that the general asymptotic behavior does not exist.