论文标题

稳健的相位通过深层图像进行定量阶段成像的图像

Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging

论文作者

Yang, Fangshu, Pham, Thanh-an, Brandenberg, Nathalie, Lutolf, Matthias P., Ma, Jianwei, Unser, Michael

论文摘要

定量相成像(QPI)是一种无标签的技术,它会产生包含形态和动力学信息的图像,而没有对比剂。不幸的是,该阶段包裹在大多数成像系统中。阶段解析是恢复更具信息图像的计算过程。较厚且复杂的样品(例如类器官)尤其具有挑战性。依靠监督培训的最新著作表明,深度学习是解开阶段的有力方法。但是,有监督的方法需要大型且代表性的数据集,这些数据集很难获得复杂的生物样品。受深度图像先验概念的启发,我们提出了一种基于深度学习的方法,不需要任何培训集。我们的框架依靠未经训练的卷积神经网络来准确解开该阶段,同时确保测量的一致性。我们通过实验表明,所提出的方法忠实地在真实和模拟数据上恢复了复杂样品的相位。我们的工作为使用QPI的厚和复杂样品的可靠相成像铺平了道路。

Quantitative phase imaging (QPI) is an emerging label-free technique that produces images containing morphological and dynamical information without contrast agents. Unfortunately, the phase is wrapped in most imaging system. Phase unwrapping is the computational process that recovers a more informative image. It is particularly challenging with thick and complex samples such as organoids. Recent works that rely on supervised training show that deep learning is a powerful method to unwrap the phase; however, supervised approaches require large and representative datasets which are difficult to obtain for complex biological samples. Inspired by the concept of deep image priors, we propose a deep-learning-based method that does not need any training set. Our framework relies on an untrained convolutional neural network to accurately unwrap the phase while ensuring the consistency of the measurements. We experimentally demonstrate that the proposed method faithfully recovers the phase of complex samples on both real and simulated data. Our work paves the way to reliable phase imaging of thick and complex samples with QPI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源