论文标题

巨型行星的偏心分布及其与卵石积分情景中的超级地球的关系

The eccentricity distribution of giant planets and their relation to super-Earths in the pebble accretion scenario

论文作者

Bitsch, Bertram, Trifonov, Trifon, Izidoro, Andre

论文摘要

观察冷木星行星($ r> $ 1 au)的人口表明,几乎所有这些行星都在偏心轨道上绕着他们的寄主恒星。对于多达几个木星质量的行星,怪异的轨道被认为是气体散射事件的结果。我们通过卵石和气体积聚模拟行星的生长以及其气盘中多个行星胚胎的迁移。然后,我们遵循形成的行星系统的长期动力学演变,在气盘扩散后,最多可达100 MYR。我们研究了原球网胚胎的初始数量以及在气相期间对偏心率和倾斜度的不同阻尼速率的重要性,即我们的行星系统的最终构型。我们通过将模拟行星系统的最终动力结构与观察到的系外行星系统的最终动力结构进行比较来限制我们的模型。我们的结果表明,只要偏心和倾斜度的阻尼有效,行星胚胎的最初数量对巨型行星的最终轨道偏心分布只有很小的影响。如果阻尼效率低下(缓慢),则胚胎初始数量较大的系统具有较大的平均偏心率。此外,对于缓慢的阻尼率,我们观察到气盘阶段已经很常见的散射事件,并且在这些模拟中形成的巨型行星与观察到的巨型行星偏心分布相匹配。这些模拟还表明,偏心轨道上的巨大巨型行星(木星质量上方)不太可能容纳内部超伊斯,因为它们在散射阶段丢失,而在几乎圆形轨道上具有较小巨型行星的系统应具有内部超级地球的系统。最后,我们的模拟预测,巨型行星平均而不是单个行星,而是生活在多星际系统中。

Observations of the population of cold Jupiter planets ($r>$1 AU) show that nearly all of these planets orbit their host star on eccentric orbits. For planets up to a few Jupiter masses, eccentric orbits are thought to be the outcome of planet-planet scattering events taking place after gas dispersal. We simulate the growth of planets via pebble and gas accretion as well as the migration of multiple planetary embryos in their gas disc. We then follow the long-term dynamical evolution of our formed planetary system up to 100 Myr after gas disc dispersal. We investigate the importance of the initial number of protoplanetary embryos and different damping rates of eccentricity and inclination during the gas phase for the final configuration of our planetary systems. We constrain our model by comparing the final dynamical structure of our simulated planetary systems to that of observed exoplanet systems. Our results show that the initial number of planetary embryos has only a minor impact on the final orbital eccentricity distribution of the giant planets, as long as damping of eccentricity and inclination is efficient. If damping is inefficient (slow), systems with a larger initial number of embryos harbor larger average eccentricities. In addition, for slow damping rates, we observe that scattering events already during the gas disc phase are common and that the giant planets formed in these simulations match the observed giant planet eccentricity distribution best. These simulations also show that massive giant planets (above Jupiter mass) on eccentric orbits are less likely to host inner super-Earths as these get lost during the scattering phase, while systems with less massive giant planets on nearly circular orbits should harbor systems of inner super-Earths. Finally, our simulations predict that giant planets are on average not single, but live in multi-planet systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源