论文标题

刺刺透 - 磷酸 - 材料作为Terahertz非线性光子学的平台

Grating-graphene metamaterial as a platform for terahertz nonlinear photonics

论文作者

Deinert, Jan-Christoph, Iranzo, David Alcaraz, Perez, Raul, Jia, Xiaoyu, Hafez, Hassan A., Ilyakov, Igor, Awari, Nilesh, Chen, Min, Bawatna, Mohammed, Ponomaryov, Alexey N., Germanskiy, Semyon, Bonn, Mischa, Koppens, Frank H. L., Turchinovich, Dmitry, Gensch, Michael, Kovalev, Sergey, Tielrooij, Klaas-Jan

论文摘要

非线性光学元件是科学和技术应用的越来越重要的领域,这是由于其与光学和光电技术的相关性和潜力。当前,正在积极搜索具有有效转换和小型材料足迹的合适的非线性材料系统。理想情况下,材料系统应允许芯片整合和室温操作。在这方面,二维材料非常有趣。石墨烯特别有前途,它在Terahertz制度中表现出极大的非线性。然而,二维材料中的轻度相互作用长度本质上是最小的,因此限制了总体非线性光转换效率。在这里,我们使用将石墨烯与光子光栅结构相结合的超材料平台克服了这一挑战,从而提供了实地增强。我们在这种超材料中测量了Terahertz的第三次荷尔多克一代,并获得有效的三阶非线性敏感性,其幅度高达3 $ \ cdot $ 10 $^{ - 8} $ m $^2 $/v $^$^2 $或21 ESU,对于0.77 thz的基本频率。这种非线性是我们在没有光栅的情况下获得的50倍。这样的增强功能对应于第三谐波信号,其强度为三个数量级,因此由于光栅而大。此外,我们使用$ \ sim $ 30 kV/cm的中等场强的第三次谐波展示了第三个谐波的现场转换效率。最后,我们证明,超越第三次的谐波的增强更加强烈,从而使我们可以观察到9 $^{\ rm th} $谐波的签名。因此,格林 - 格拉彭烯材料构成了商业上可行,CMOS兼容,室温,芯片集成,THZ非线性转换应用的出色平台。

Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3$\cdot$10$^{-8}$m$^2$/V$^2$, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to $\sim$1% using a moderate field strength of $\sim$30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9$^{\rm th}$ harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源