论文标题
用双扩散编码MR:仿真研究,绘制灰质中的复杂细胞形态
Mapping complex cell morphology in the grey matter with double diffusion encoding MR: a simulation study
论文作者
论文摘要
本文研究了对标准的单个单个扩散编码(SDE)和更先进的双重扩散编码(DMRI)的影响,研究细胞体(SOMA)大小和细胞投影对扩散MR成像(DMRI)和光谱信号的影响。目的是研究DMRI/DMR表征脑灰质复杂形态的能力,重点是这两个独特的特征。为此,我们采用了一个最近开发的框架来为蒙特卡洛模拟创建现实的网格,涵盖了各种soma尺寸和细胞投影的分支顺序,以反映水和代谢物的扩散性。对于SDE序列,我们评估SOMA大小和分支顺序对信号B值依赖性的影响以及明显扩散系数(ADC)的时间依赖性。对于DDE序列,我们评估了它们对信号角度调制和估计的微观各向异性的混合时间依赖性的影响,这是DDE测量结果得出的有希望的对比度。 SDE结果表明,SOMA大小对水和代谢产物的B值和扩散时间依赖性都有可测量的影响。另一方面,分支顺序对任何一个都没有影响,尤其是对水的影响。相比之下,DDE结果表明,SOMA大小在短时间混合时间和分支顺序对信号角度调制具有可测量的影响,从而显着影响信号角度调制的混合时间依赖性以及衍生的微观各向异性,用于水和代谢物。我们的结果证实,可以从基于SDE的技术估算SOMA大小,最重要的是,DDE测量首次表明对细胞投影的分支的敏感性,这为灰质形态的非侵入性表征铺平了道路。
This paper investigates the impact of cell body (soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to study the ability of dMRI/dMRS to characterize the complex morphology of brain grey matter, focusing on these two distinctive features. To this end, we employ a recently developed framework to create realistic meshes for Monte Carlo simulations, covering a wide range of soma sizes and branching orders of cellular projections, for diffusivities reflecting both water and metabolites. For SDE sequences, we assess the impact of soma size and branching order on the signal b-value dependence as well as the time dependence of the apparent diffusion coefficient (ADC). For DDE sequences, we assess their impact on the mixing time dependence of the signal angular modulation and of the estimated microscopic anisotropy, a promising contrast derived from DDE measurements. The SDE results show that soma size has a measurable impact on both the b-value and diffusion time dependence, for both water and metabolites. On the other hand, branching order has little impact on either, especially for water. In contrast, the DDE results show that soma size has a measurable impact on the signal angular modulation at short mixing times and the branching order significantly impacts the mixing time dependence of the signal angular modulation as well as of the derived microscopic anisotropy, for both water and metabolites. Our results confirm that soma size can be estimated from SDE based techniques, and most importantly, show for the first time that DDE measurements show sensitivity to the branching of cellular projections, paving the way for non-invasive characterization of grey matter morphology.