论文标题

搜索非亚伯晶格理论的哈密顿模拟的有效配方

Search for Efficient Formulations for Hamiltonian Simulation of non-Abelian Lattice Gauge Theories

论文作者

Davoudi, Zohreh, Raychowdhury, Indrakshi, Shaw, Andrew

论文摘要

Hamiltonian的晶格计理论(LGT)是量子模拟的目的最自然的框架,量子模拟的目的是随着量子计算算法和硬件的进步而增长的研究领域。因此,考虑到具有任何有限的计算资源的仪表玻色子的希尔伯特空间所必需的截断,确定最准确,在计算经济上的哈密顿式配方中,这仍然是一项重要任务。本文是在非亚伯LGT的情况下解决这个问题的第一步,该问题进一步要求对希尔伯特空间中的非亚洲高斯定律施加,从而引入了其他计算复杂性。在1+1 D中的SU(2)LGT偶联的情况下,分析了原始Kogut-Susskind框架的许多不同公式,分析了物理希尔伯特空间对边界条件,系统大小的尺寸的依赖性以及对量规效率兴奋的临界值的依赖性。研究了此类依赖性对频谱和动力学的准确性的影响,并研究了这些考虑因素(经典)计算资源要求。除了该理论的众所周知的角度摩孔公式外,还分析了纯粹的费尔米金和纯粹的骨气配方(带有开放的边界条件)的病例,并分析了循环 - 弦 - 弦 - 弦曲制式,以及对同一理论的量子链接模型的简要讨论。在使用Loop-string-Hadron框架合作时发现了明显的优势,该框架使用一组完整的规格不变的操作员,将非亚伯高斯的定律提前存在。尽管在这项工作的数值分析中研究了小的晶格,并且仅考虑了最简单的算法,但一系列结论将适用于较大的系统,并可能适用于更高的维度。

Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories, considering the necessary truncation imposed on the Hilbert space of gauge bosons with any finite computing resources. This paper is a first step toward addressing this question in the case of non-Abelian LGTs, which further require the imposition of non-Abelian Gauss's laws on the Hilbert space, introducing additional computational complexity. Focusing on the case of SU(2) LGT in 1+1 D coupled to matter, a number of different formulations of the original Kogut-Susskind framework are analyzed with regard to the dependence of the dimension of the physical Hilbert space on boundary conditions, system's size, and the cutoff on the excitations of gauge bosons. The impact of such dependencies on the accuracy of the spectrum and dynamics is examined, and the (classical) computational-resource requirements given these considerations are studied. Besides the well-known angular-momentum formulation of the theory, the cases of purely fermionic and purely bosonic formulations (with open boundary conditions), and the Loop-String-Hadron formulation are analyzed, along with a brief discussion of a Quantum Link Model of the same theory. Clear advantages are found in working with the Loop-String-Hadron framework which implements non-Abelian Gauss's laws a priori using a complete set of gauge-invariant operators. Although small lattices are studied in the numerical analysis of this work, and only the simplest algorithms are considered, a range of conclusions will be applicable to larger systems and potentially to higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源