论文标题

扭曲的双层石墨烯。 ii。稳定的对称异常

Twisted bilayer graphene. II. Stable symmetry anomaly

论文作者

Song, Zhi-Da, Lian, Biao, Regnault, Nicolas, Bernevig, B. Andrei

论文摘要

我们表明,带有粒子孔对称性的扭曲双层石墨烯(TBG)(不仅是两个活动带)的整个连续模型是异常的,因此与晶格模型不相容。以前的作品,例如[物理学。莱特牧师。 123,036401],[物理学。 Rev. X 9,021013],[Phys。 Rev. B 99,195455],其他[1-4]发现,TBG中的两个平面频段具有由$ c_ {2z} t $对称性保护的脆弱拓扑。 [物理。莱特牧师。 123,036401]还指出了TBG连续模型中的一个近似粒子孔对称性($ \ MATHCAL {P} $)。在这项工作中,我们从数值上确认$ \ Mathcal {p} $确实是TBG的一个很好的近似值,并表明这两个平面频段的脆弱拓扑已增强到$ \ Mathcal {p} $ - 受保护的稳定拓扑。这种稳定的拓扑意味着$ 4L+2 $($ l \ in \ Mathbb {n} $)中间两个频段之间的狄拉克点。 $ \ MATHCAL {P} $ - 受保护的稳定拓扑与其他频段之间的中间两个频段之间的任意差距截止非常强大。我们进一步表明,值得注意的是,这种$ \ MATHCAL {P} $ - 受保护的稳定拓扑以及相应的$ 4L + 2 $ DIRAC点,无法在保留$ C_ {2Z} T $和$ \ MATHCAL {P} $ SYMMETRIES的晶格模型中实现。换句话说,TBG的连续模型是异常的,无法在晶格上实现。还讨论了另外两个相关的主题,以及对相互作用的TBG问题的影响,即,在两个平面频段中选择Chern谱带基础,以及在所谓的第二次手性限制中的TBG的完美金属阶段。

We show that the entire continuous model of twisted bilayer graphene (TBG) (and not just the two active bands) with particle-hole symmetry is anomalous and hence incompatible with a lattice model. Previous works, e.g., [Phys. Rev. Lett. 123, 036401], [Phys. Rev. X 9, 021013], [Phys. Rev. B 99, 195455], and others [1-4] found that the two flat bands in TBG possess a fragile topology protected by the $C_{2z}T$ symmetry. [Phys. Rev. Lett. 123, 036401] also pointed out an approximate particle-hole symmetry ($\mathcal{P}$) in the continuous model of TBG. In this work, we numerically confirm that $\mathcal{P}$ is indeed a good approximation for TBG and show that the fragile topology of the two flat bands is enhanced to a $\mathcal{P}$-protected stable topology. This stable topology implies $4l+2$ ($l\in\mathbb{N}$) Dirac points between the middle two bands. The $\mathcal{P}$-protected stable topology is robust against arbitrary gap closings between the middle two bands the other bands. We further show that, remarkably, this $\mathcal{P}$-protected stable topology, as well as the corresponding $4l + 2$ Dirac points, cannot be realized in lattice models that preserve both $C_{2z}T$ and $\mathcal{P}$ symmetries. In other words, the continuous model of TBG is anomalous and cannot be realized on lattices. Two other topology related topics, with consequences for the interacting TBG problem, i.e., the choice of Chern band basis in the two flat bands and the perfect metal phase of TBG in the so-called second chiral limit, are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源