论文标题
笛卡尔机器人控制的虚拟向前动力学模型
Virtual Forward Dynamics Models for Cartesian Robot Control
论文作者
论文摘要
在工业环境中,入学控制代表了与环境的交互任务编程机器人的重要方案。这些机器人通常在联合层面上实施高增益干扰拒绝,并直接访问速度或位置控制接口后面的执行器。使用腕部力扭力传感器来增强对这些系统的符合性,力解决的控制定律必须映射从笛卡尔空间到关节运动的控制信号。尽管远期动力学算法将完全适合该任务描述,但它们在笛卡尔机器人控制中的应用尚未得到很好的研究。本文提出了用于笛卡尔机器人控制的虚拟前向动力学模型的一般概念,并研究了与良好的替代方案相比,远期映射的行为。通过减少虚拟系统的链路质量与终效应子相比,虚拟系统在操作空间动力学中变为线性。实验侧重于稳定性和可操作性,尤其是在单数配置中。我们的结果表明,通过这种技巧,向前动力学可以结合雅各布逆的益处和雅各布式的转置,在这方面,优型最小二乘法优于阻尼最小二乘法。
In industrial context, admittance control represents an important scheme in programming robots for interaction tasks with their environments. Those robots usually implement high-gain disturbance rejection on joint-level and hide direct access to the actuators behind velocity or position controlled interfaces. Using wrist force-torque sensors to add compliance to these systems, force-resolved control laws must map the control signals from Cartesian space to joint motion. Although forward dynamics algorithms would perfectly fit to that task description, their application to Cartesian robot control is not well researched. This paper proposes a general concept of virtual forward dynamics models for Cartesian robot control and investigates how the forward mapping behaves in comparison to well-established alternatives. Through decreasing the virtual system's link masses in comparison to the end effector, the virtual system becomes linear in the operational space dynamics. Experiments focus on stability and manipulability, particularly in singular configurations. Our results show that through this trick, forward dynamics can combine both benefits of the Jacobian inverse and the Jacobian transpose and, in this regard, outperforms the Damped Least Squares method.