论文标题

在时间网络上建模流行病的系统框架

A Systematic Framework of Modelling Epidemics on Temporal Networks

论文作者

Humphries, Rory, Mulchrone, Kieran, Tratalos, Jamie, More, Simon, Hövel, Philipp

论文摘要

我们提出了一个建模框架,用于在时间网络上传播流行病,从中可以从中恢复基于个体的模型和基于成对的模型。从该框架中系统地衍生的拟议的基于时间对的模型通过远离以边缘为中心的描述,同时保持描述简洁且相对简单,从而对现有的基于对的模型进行了改进。对于传染过程,我们考虑易感感染的(SIR)模型,该模型在具有随时间变化的边缘的网络上实现。我们表明,从基于个体基于成对的数量到基于成对的数量的观点的转变可以使马尔可夫流行过程的精确建模。在任意网络上,与基于个体的模型相比,在低计算和概念成本下,基于配对的模型在低计算和概念成本下可实现大幅提高。从基于配对的模型中,我们分析发现流行病所必需的条件,也称为流行病阈值。由于SIR模型只有一个稳定的固定点,即是全局非感染状态,因此我们通过查看模型的初始稳定性来确定流行病。

We present a modelling framework for the spreading of epidemics on temporal networks from which both the individual-based and pair-based models can be recovered. The proposed temporal pair-based model that is systematically derived from this framework offers an improvement over existing pair-based models by moving away from edge-centric descriptions while keeping the description concise and relatively simple. For the contagion process, we consider the Susceptible-Infected-Recovered (SIR) model, which is realized on a network with time-varying edges. We show that the shift in perspective from individual-based to pair-based quantities enables exact modelling of Markovian epidemic processes on temporal tree networks. On arbitrary networks, the proposed pair-based model provides a substantial increase in accuracy at a low computational and conceptual cost compared to the individual-based model. From the pair-based model, we analytically find the condition necessary for an epidemic to occur, otherwise known as the epidemic threshold. Due to the fact that the SIR model has only one stable fixed point, which is the global non-infected state, we identify an epidemic by looking at the initial stability of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源