论文标题

关于深度参数对移动应用能源使用的影响的实证研究

An Empirical Study on the Impact of Deep Parameters on Mobile App Energy Usage

论文作者

Xu, Qiang, Davis, James C., Hu, Y. Charlie, Jindal, Abhilash

论文摘要

通过配置参数调整改善软件性能是软件维护过程中的常见活动。除了延迟之类的传统性能指标外,移动应用程序开发人员还有兴趣减少应用程序能源的使用。一些移动应用程序具有用于参数调整的集中位置,类似于数据库和操作系统,但是移动应用程序通常在源代码周围散布了数百个参数。这些“深”参数与APP能源使用之间的相关性尚不清楚。研究人员研究了特定模块中深参数的能量影响,但我们对移动深度参数的能量影响缺乏系统的理解。 在本文中,我们将开发人员的调查与系统的能源测量结合在一起,从经验上研究了这个主题。我们对25个Android开发人员的动机调查表明,开发人员不了解,并且在很大程度上忽略了深度参数的能量影响。为了评估这种做法的潜在含义,我们提出了一个深度参数能量分析框架,可以分析应用程序中深参数的能量影响。我们的框架标识了深度参数,根据我们的参数值选择方案进行突变,并执行可靠的能量影响分析。将框架应用于16个受欢迎的Android应用程序,我们发现深度参数诱导的能量效率很少。我们发现在1644个深度参数中,只有2个可以显着提高其应用程序的能源效率。一项详细的分析发现,大多数深度参数既没有能量影响,能量影响有限,要么仅在极端值下进行能量影响。我们的研究表明,开发人员在选择移动应用程序中的深度参数值时忽略能源影响通常是安全的。

Improving software performance through configuration parameter tuning is a common activity during software maintenance. Beyond traditional performance metrics like latency, mobile app developers are interested in reducing app energy usage. Some mobile apps have centralized locations for parameter tuning, similar to databases and operating systems, but it is common for mobile apps to have hundreds of parameters scattered around the source code. The correlation between these "deep" parameters and app energy usage is unclear. Researchers have studied the energy effects of deep parameters in specific modules, but we lack a systematic understanding of the energy impact of mobile deep parameters. In this paper we empirically investigate this topic, combining a developer survey with systematic energy measurements. Our motivational survey of 25 Android developers suggests that developers do not understand, and largely ignore, the energy impact of deep parameters. To assess the potential implications of this practice, we propose a deep parameter energy profiling framework that can analyze the energy impact of deep parameters in an app. Our framework identifies deep parameters, mutates them based on our parameter value selection scheme, and performs reliable energy impact analysis. Applying the framework to 16 popular Android apps, we discovered that deep parameter-induced energy inefficiency is rare. We found only 2 out of 1644 deep parameters for which a different value would significantly improve its app's energy efficiency. A detailed analysis found that most deep parameters have either no energy impact, limited energy impact, or an energy impact only under extreme values. Our study suggests that it is generally safe for developers to ignore the energy impact when choosing deep parameter values in mobile apps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源