论文标题

高阶接触力学

Higher-order contact mechanics

论文作者

de León, Manuel, Gaset, Jordi, Laínz, Manuel, Muñoz-Lecanda, Miguel C., Román-Roy, Narciso

论文摘要

我们提出了高阶自主接触力学的完整理论,该理论使我们能够描述耗散的高阶动力学系统。该理论的基本工具是扩展的高阶切线捆绑包,$ {\ rm t}^kq \ times {\ mathbb r} $以前是在此之前引入的几何结构,以陈述拉格朗日和汉密尔顿形式,用于这些系统,包括它们的各种表述。通过使用这些结构并概括了触点拉格朗日和哈密顿系统的标准公式,可以获得变分原理,接触形式和几何动力学方程。作为另一种方法,我们开发了一个统一的描述,该描述涵盖了Lagendre Map的拉格朗日语和哈密顿方程及其关系。所有这些都是从接触动力学方程和实现的约束算法中获得的,因为在这种形式上,动态系统始终是单数。最终使用这些几何制剂分析了一些有趣的例子。

We present a complete theory of higher-order autonomous contact mechanics, which allows us to describe higher-order dynamical systems with dissipation. The essential tools for the theory are the extended higher-order tangent bundles, ${\rm T}^kQ\times{\mathbb R}$, whose geometric structures are previously introduced in order to state the Lagrangian and Hamiltonian formalisms for these kinds of systems, including their variational formulation. The variational principle, the contact forms, and the geometric dynamical equations are obtained by using those structures and generalizing the standard formulation of contact Lagrangian and Hamiltonian systems. As an alternative approach, we develop a unified description that encompasses the Lagrangian and Hamiltonian equations as well as their relationship through the Legendre map; all of them are obtained from the contact dynamical equations and the constraint algorithm that is implemented because, in this formalism, the dynamical systems are always singular. Some interesting examples are finally analyzed using these geometric formulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源