论文标题
洛伦兹在等离子晶体均质化中的共振
Lorentz Resonance in the Homogenization of Plasmonic Crystals
论文作者
论文摘要
我们将洛伦兹在等离子体晶体中的共振,由2D纳米介电包含物组成,作为谐振材料特性与静电性质的几何共振之间的相互作用。这种等离子晶体的一个例子是石墨烯纳米片,它们定期排列在非磁性散装介电内。我们在小规模周期的长度尺度上确定局部几何共振。从材料的角度来看,石墨烯表面表现出由Drude模型捕获的分散表面电导。这些现象共同共同以表面几何形状和表面电导控制的频率产生洛伦兹的共振。在大量超材料的有效介电张量的频率响应中发现的洛伦兹谐振显示出通过显式公式给出,其中材料特性和几何谐振被解耦。该公式是严格的,直接从描述异质结构内部局部静电场的校正场获得。我们的分析结果可以作为描述周期性光学设备的一般频率依赖性的有效计算工具。作为一个具体的例子,我们研究了两个由纳米管和纳米管组成的典型几何形状。
We explain the Lorentz resonances in plasmonic crystals that consist of 2D nano dielectric inclusions as the interaction between resonant material properties and geometric resonances of electrostatic nature. One example of such plasmonic crystals are graphene nanosheets that are periodically arranged within a non-magnetic bulk dielectric. We identify local geometric resonances on the length scale of the small scale period. From a materials perspective, the graphene surface exhibits a dispersive surface conductance captured by the Drude model. Together these phenomena conspire to generate Lorentz resonances at frequencies controlled by the surface geometry and the surface conductance. The Lorentz resonances found in the frequency response of the effective dielectric tensor of the bulk metamaterial is shown to be given by an explicit formula, in which material properties and geometric resonances are decoupled. This formula is rigorous and obtained directly from corrector fields describing local electrostatic fields inside the heterogeneous structure. Our analytical findings can serve as an efficient computational tool to describe the general frequency dependence of periodic optical devices. As a concrete example, we investigate two prototypical geometries composed of nanotubes and nanoribbons.