论文标题

尖锐的Sobolev估计集合扩散方程的溶液浓度

Sharp Sobolev estimates for concentration of solutions to an aggregation-diffusion equation

论文作者

Biler, Piotr, Boritchev, Alexandre, Karch, Grzegorz, Laurençot, Philippe

论文摘要

我们考虑漂移扩散方程$ u_t-εδU + \ nabla \ cdot(u \ nabla k^*u)= 0 $在整个空间中,全球时间解决方案在所有sobolev空间中都有界限;为简单起见,我们将自己限制在模型情况下$ k(x)= - | x | $。我们量化了该方程式的径向对称解的质量浓度现象(一种真正的非线性效应),用于在我们以前的论文[3]中研究的小扩散率$ε$,从而获得了Sobolev规范的最佳尖锐上限和下限。

We consider the drift-diffusion equation $u_t-εΔu + \nabla \cdot(u\nabla K^*u)=0$ in the whole space with global-in-time solutions bounded in all Sobolev spaces; for simplicity, we restrict ourselves to the model case $K(x)=-|x|$. We quantify the mass concentration phenomenon, a genuinely nonlinear effect, for radially symmetric solutions of this equation for small diffusivity $ε$ studied in our previous paper [3], obtaining optimal sharp upper and lower bounds for Sobolev norms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源