论文标题

多阶段随机编程的随机进行性套期保值方法

Randomized Progressive Hedging methods for Multi-stage Stochastic Programming

论文作者

Bareilles, Gilles, Laguel, Yassine, Grishchenko, Dmitry, Iutzeler, Franck, Malick, Jérôme

论文摘要

渐进式套期保值是一种流行的分解算法,用于解决多阶段随机优化问题。该算法的计算瓶颈是,必须在每次迭代时解决所有方案子问题。在本文中,我们介绍了渐进式对冲算法的随机版本,能够在解决单个方案子问题后立即产生新的迭代。在渐进式套期保值和单调操作员之间的关系的基础上,我们利用随机固定点方法的最新结果来得出和分析提出的方法。最后,我们将相应的代码作为易于使用的朱莉娅工具箱发布,并报告计算实验,显示了随机算法的实际兴趣,特别是在平行上下文中。在整个论文中,我们特别关注演示文稿,强调主要思想,避免技术外的思想,以使运营研究社区中广泛的受众可以访问随机方法。

Progressive Hedging is a popular decomposition algorithm for solving multi-stage stochastic optimization problems. A computational bottleneck of this algorithm is that all scenario subproblems have to be solved at each iteration. In this paper, we introduce randomized versions of the Progressive Hedging algorithm able to produce new iterates as soon as a single scenario subproblem is solved. Building on the relation between Progressive Hedging and monotone operators, we leverage recent results on randomized fixed point methods to derive and analyze the proposed methods. Finally, we release the corresponding code as an easy-to-use Julia toolbox and report computational experiments showing the practical interest of randomized algorithms, notably in a parallel context. Throughout the paper, we pay a special attention to presentation, stressing main ideas, avoiding extra-technicalities, in order to make the randomized methods accessible to a broad audience in the Operations Research community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源