论文标题
风格不变的心脏图像分割,并进行测试时间增加
Style-invariant Cardiac Image Segmentation with Test-time Augmentation
论文作者
论文摘要
由于实际临床环境中的外观变化,深层模型通常会遭受严重的性能下降。大多数基于学习的方法都依赖于来自多个站点/供应商甚至相应标签的图像。但是,将足够的未知数据收集到可靠的模型分割不可能始终保持,因为在日常应用中由成像因子引起的复杂外观转移。在本文中,我们提出了一种用于心脏图像分割的新型风格不变方法。基于零拍传输的转移,以消除外观变化和测试时间扩大以探索基础解剖结构,我们提出的方法有效地对抗外观转移。我们的贡献是三倍。首先,受到通用风格转移精神的启发,我们为内容图像开发了零拍风格化,以生成与样式图像相似的风格化图像。其次,我们建立了一个基于U-NET结构的强大心脏分割模型。我们的框架主要由测试过程中的两个网络组成:用于删除外观变化和分割网络的ST网络。第三,我们研究了测试时间的增加,以探索预测的风格化图像的转换版本,并将结果合并。值得注意的是,我们提出的框架是完全测试的适应性。实验结果表明,我们的方法是有望且通用的,用于概括深度分割模型。
Deep models often suffer from severe performance drop due to the appearance shift in the real clinical setting. Most of the existing learning-based methods rely on images from multiple sites/vendors or even corresponding labels. However, collecting enough unknown data to robustly model segmentation cannot always hold since the complex appearance shift caused by imaging factors in daily application. In this paper, we propose a novel style-invariant method for cardiac image segmentation. Based on the zero-shot style transfer to remove appearance shift and test-time augmentation to explore diverse underlying anatomy, our proposed method is effective in combating the appearance shift. Our contribution is three-fold. First, inspired by the spirit of universal style transfer, we develop a zero-shot stylization for content images to generate stylized images that appearance similarity to the style images. Second, we build up a robust cardiac segmentation model based on the U-Net structure. Our framework mainly consists of two networks during testing: the ST network for removing appearance shift and the segmentation network. Third, we investigate test-time augmentation to explore transformed versions of the stylized image for prediction and the results are merged. Notably, our proposed framework is fully test-time adaptation. Experiment results demonstrate that our methods are promising and generic for generalizing deep segmentation models.