论文标题

傅立叶变换的代数方法

An Algebraic Approach to Fourier Transformation

论文作者

Rosenkranz, Markus, Landsmann, Günter

论文摘要

从代数的角度描述了傅立叶变换的概念,该角度将自己适用于符号计算中的应用。我们基于给定的海森伯格集团建立代数结构(从一般意义上讲,尼尔夸克群体享有分裂财产);这尤其包括全范围二元性。确定相应类别中的自由对象,并给出各种示例。作为迈向符号计算的第一步,我们详细研究了两个建设性示例 - 高斯(有和没有多项式因素)和双曲线sepant代数。

The notion of Fourier transformation is described from an algebraic perspective that lends itself to applications in Symbolic Computation. We build the algebraic structures on the basis of a given Heisenberg group (in the general sense of nilquadratic groups enjoying a splitting property); this includes in particular the whole gamut of Pontryagin duality. The free objects in the corresponding categories are determined, and various examples are given. As a first step towards Symbolic Computation, we study two constructive examples in some detail -- the Gaussians (with and without polynomial factors) and the hyperbolic secant algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源