论文标题

使用缺失功能解释化学毒性

Explaining Chemical Toxicity using Missing Features

论文作者

Lim, Kar Wai, Sharma, Bhanushee, Das, Payel, Chenthamarakshan, Vijil, Dordick, Jonathan S.

论文摘要

使用机器学习的化学毒性预测在减少反复的动物和人类测试的药物开发中很重要,从而节省了成本和时间。强烈建议在机械上可以解释计算毒理学模型的预测。当前的最新机器学习分类器基于深度神经网络,这些神经网络往往很复杂且难以解释。在本文中,我们采用了一种名为“对比解释方法”(CEM)的最新开发的方法来解释为什么预测化学物质或分子是否有毒。与基于分子中存在的特征提供解释的流行方法相反,CEM提供了有关分子中缺少哪些特征的其他解释,而这些特征对于预测至关重要,称为相关的负面。 CEM通过使用预测的快速迭代收缩率鉴定算法(FISTA)来优化对模型的最小扰动来实现这一目标。我们验证了CEM的解释匹配已知的毒理学以及其他工作的发现。

Chemical toxicity prediction using machine learning is important in drug development to reduce repeated animal and human testing, thus saving cost and time. It is highly recommended that the predictions of computational toxicology models are mechanistically explainable. Current state of the art machine learning classifiers are based on deep neural networks, which tend to be complex and harder to interpret. In this paper, we apply a recently developed method named contrastive explanations method (CEM) to explain why a chemical or molecule is predicted to be toxic or not. In contrast to popular methods that provide explanations based on what features are present in the molecule, the CEM provides additional explanation on what features are missing from the molecule that is crucial for the prediction, known as the pertinent negative. The CEM does this by optimizing for the minimum perturbation to the model using a projected fast iterative shrinkage-thresholding algorithm (FISTA). We verified that the explanation from CEM matches known toxicophores and findings from other work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源