论文标题
分数粘弹性结构的异常非线性动力学行为
Anomalous Nonlinear Dynamics Behavior of Fractional Viscoelastic Structures
论文作者
论文摘要
分数模型及其参数对异常材料的内在微结构的变化敏感。我们研究了这样的物理学模型如何将不断发展的异常流变性传播到机械系统的非线性动力学。特别是,我们在基础激发和游离振动下分析了分数,几何粘弹性悬臂束的振动,其中通过分布式分数分数模型,粘弹性响应是一般的。我们采用汉密尔顿的原理来获得相应的运动方程,并选择特定的材料分布函数,这些材料分布函数恢复了订单$α$的分数kelvin-voigt粘弹性模型。通过空间中的光谱分解,所得的时间分数偏微分方程将减少到非线性时段的普通微分方程,其中线性对应物通过采用直接的L1差异方案在数值上积分。我们进一步开发了一种半分析方案,可以通过多个量表的方法解决非线性系统,该方法在频率方面产生了立方代数方程。我们的数值结果表明,一组$α$依赖性的异常动态质量,例如远程平衡的幂律振幅衰减速率,自由振动时振幅响应的超敏性以及一级稳态振幅的分叉。
Fractional models and their parameters are sensitive to changes in the intrinsic micro-structures of anomalous materials. We investigate how such physics-informed models propagate the evolving anomalous rheology to the nonlinear dynamics of mechanical systems. In particular, we analyze the vibration of a fractional, geometrically nonlinear viscoelastic cantilever beam, under base excitation and free vibration, where the viscoelastic response is general through a distributed-order fractional model. We employ Hamilton's principle to obtain the corresponding equation of motion with the choice of specific material distribution functions that recover a fractional Kelvin-Voigt viscoelastic model of order $α$. Through spectral decomposition in space, the resulting time-fractional partial differential equation reduces to a nonlinear time-fractional ordinary differential equation, in which the linear counterpart is numerically integrated by employing a direct L1-difference scheme. We further develop a semi-analytical scheme to solve the nonlinear system through a method of multiple scales, which yields a cubic algebraic equation in terms of the frequency. Our numerical results suggest a set of $α$-dependent anomalous dynamic qualities, such as far-from-equilibrium power-law amplitude decay rates, super-sensitivity of amplitude response at free vibration, and bifurcation in steady-state amplitude at primary resonance.