论文标题

杨阳函数,单型和结多项式

Yang-Yang functions, Monodromy and knot polynomials

论文作者

Liu, Peng, Ruan, Wei-Dong

论文摘要

我们得出了$ \ mathbb {z} [t,t^{ - 1}] $的结构。对于古典类型的复杂简单谎言代数的基本表示,我们给出了明确的墙壁划线公式,并证明了$ \ Mathbb {z} [t,t,t^{ - 1}] $ - 模块捆绑的单型表示与$ r-matrices of uneside r-ud-ud-ud-ud-ud-ud-ud-ud-ud-ud ud-u__} h.我们表明,通过对称破坏变形和两个复杂参数的旋转相互通勤引起的两种转换。

We derive a structure of $\mathbb{Z}[t,t^{-1}]$-module bundle from a family of Yang-Yang functions. For the fundamental representation of the complex simple Lie algebra of classical type, we give explicit wall-crossing formula and prove that the monodromy representation of the $\mathbb{Z}[t,t^{-1}]$-module bundle is equivalent to the braid group representation induced by the universal R-matrices of $U_{h}(g)$. We show that two transformations induced on the fiber by the symmetry breaking deformation and respectively the rotation of two complex parameters commute with each other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源