论文标题
HOM缔合代数的(CO)同源性的非共同差分积分
Noncommutative differential calculus on (co)homology of hom-associative algebras
论文作者
论文摘要
HOM与社会代数是一个代数,其联想性被代数同态扭曲。作者此前曾表明,Hochschild的共同协会代数$ A $带有Gerstenhaber结构。在这篇简短的论文中,我们表明,这种Gerstenhaber结构以及$ a $ a $ a的Hochschild同源性的某些操作使非共同的差分计算。作为一种应用,我们在常规的Unital-Unital Symmetric对称性代数的Hochschild共同体学上获得了Batalin-Vilkovisky代数结构。
A hom-associative algebra is an algebra whose associativity is twisted by an algebra homomorphism. It was previously shown by the author that the Hochschild cohomology of a hom-associative algebra $A$ carries a Gerstenhaber structure. In this short paper, we show that this Gerstenhaber structure together with certain operations on the Hochschild homology of $A$ makes a noncommutative differential calculus. As an application, we obtain a Batalin-Vilkovisky algebra structure on the Hochschild cohomology of a regular unital symmetric hom-associative algebra.