论文标题

反向等级不等式及其在Helfrich功能的梯度流中的应用

A Reverse Isoperimetric Inequality and its Application to the Gradient Flow of the Helfrich Functional

论文作者

Blatt, Simon

论文摘要

我们证明了嵌入式表面的定量反向等级不平等,威尔莫尔能量从$8π$限制。我们使用此结果来分析Willmore Energy的负$ L^2 $梯度流以及包含体积的正倍。我们表明,Willmore Energy的初始表面小于$8π$,正包含体积在有限或无限时间内收敛到圆点。

We prove a quantitative reverse isoperimetric inequality for embedded surfaces with Willmore energy bounded away from $8π$. We use this result to analyze the negative $L^2$ gradient flow of the Willmore energy plus a positive multiple of the inclosed volume. We show that initial surfaces of Willmore energy less than $8π$ with positive inclosed volume converge to a round point in finite or infinite time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源