论文标题
反向等级不等式及其在Helfrich功能的梯度流中的应用
A Reverse Isoperimetric Inequality and its Application to the Gradient Flow of the Helfrich Functional
论文作者
论文摘要
我们证明了嵌入式表面的定量反向等级不平等,威尔莫尔能量从$8π$限制。我们使用此结果来分析Willmore Energy的负$ L^2 $梯度流以及包含体积的正倍。我们表明,Willmore Energy的初始表面小于$8π$,正包含体积在有限或无限时间内收敛到圆点。
We prove a quantitative reverse isoperimetric inequality for embedded surfaces with Willmore energy bounded away from $8π$. We use this result to analyze the negative $L^2$ gradient flow of the Willmore energy plus a positive multiple of the inclosed volume. We show that initial surfaces of Willmore energy less than $8π$ with positive inclosed volume converge to a round point in finite or infinite time.