论文标题
银河系加速器和阿拉加河外的韦克菲尔德加速的天体物理证据通过伽马射线和UHECRS
Astrophysical Evidence of Wakefield Acceleration in Galactic and Extragalactic Jets via Gamma Rays and UHECRs
论文作者
论文摘要
我们介绍了六个案例研究($ 1-10^9 $ $ m_ \ odot $)的天体物理对象,每个物体都表现出喷气机的迹象,并发出了强烈的高能伽玛射线($> 10 $ GEV)。这些对象中的许多物体还发出了可在空间识别的超高能宇宙射线(UHECR)。在所有情况下,韦克菲尔德加速度(WFA)都会解释全球属性和详细信息。对于Blazars,我们还解释了这些信号的时间结构,其中包括中微子,以及其“爆发”中的相关性和通量和指数中的抗相关性。 Blazars($ \ sim 10^9 $ $ m_ \ odot $),射电星系($ \ sim 10^8 \,m _ {\ odot} $),Seyfert Galaxies($ \ sim 10^6 \,m _ {\ odot} $)以微量值($ 1 \ sim 10 $ $ $ m_ \ odot $)表现出相同的物理学,因为除了最大值外,积聚和加速度的性质独立于质量,因此表现出相同的物理。可以将电子加速到大于$ 10 $ GEV的能量,而质子则超过$ 10^{20} $ ev,wfa带有WFA。我们将观察价值与理论值进行比较,以说明它们非常同意。该机制还伴随着相关的排放,例如高能销钉中微子,无线电,光学和X射线排放的时间变化,可以通过多隔离器方法来表征这些天体物理对象。
We present six case studies from a broad mass range ($1 - 10^9$ $M_\odot$) of astrophysical objects, each of which exhibit signs of jets and emit intense high energy gamma rays ($>10$ GeV). Many of these objects also emit spatially identifiable ultra high energy cosmic rays (UHECRs). In all cases it is found that wakefield acceleration (WFA) explains both the global properties and details. For blazars, we also explain the temporal structure of these signals, which includes neutrinos, and the correlations in their "bursts" and anti-correlation in flux and index. Blazars ($\sim 10^9$ $M_\odot$), radio galaxies ($\sim 10^8\, M_{\odot}$), Seyfert galaxies ($\sim 10^6 \,M_{\odot}$), starburst galaxies ($\sim 10^{3}\, M_{\odot}$), down to microquasars ($1 \sim 10$ $M_\odot$) interestingly exhibit the same physics since the nature of the accretion and acceleration is independent of the mass, aside from maximum values. It is possible to accelerate electrons to energies much greater than $10$ GeV, and protons beyond $10^{20}$ eV with WFA. We compare observational values with theoretical ones to illustrate they are in good agreement. This mechanism is also accompanied by related emissions, such as high-energy pin-pointed neutrinos, time varying radio, optical, and X-ray emissions, opening an opportunity to characterize these astrophysical objects via multi-messenger approaches.