论文标题
Super-SAM:使用姿势估计器的监督信号来训练个人防护设备识别的空间注意模块
SuPEr-SAM: Using the Supervision Signal from a Pose Estimator to Train a Spatial Attention Module for Personal Protective Equipment Recognition
论文作者
论文摘要
我们提出了一种深度学习方法,以自动检测个人防护设备(PPE),例如头盔,手术口罩,反射背心,靴子等。基于深度学习的PPE检测的典型方法是(i)训练对象探测器的物品,例如上述项目或(ii)训练一个人探测器和分类器,该物品采用探测器预测的边界框,并区分不穿相应PPE物品的人。我们提出了一种使用三个组成部分的新颖而准确的方法:一个人探测器,身体姿势估计器和分类器。我们的新颖性包括仅在训练时间使用姿势估计器来提高分类器的预测性能。我们通过添加空间注意机制来修改分类器的神经结构,该机制是使用姿势估计器的监督信号训练的。通过这种方式,分类器学会着专注于PPE项目,使用姿势估计器中的知识,在推断过程中几乎没有计算开销。
We propose a deep learning method to automatically detect personal protective equipment (PPE), such as helmets, surgical masks, reflective vests, boots and so on, in images of people. Typical approaches for PPE detection based on deep learning are (i) to train an object detector for items such as those listed above or (ii) to train a person detector and a classifier that takes the bounding boxes predicted by the detector and discriminates between people wearing and people not wearing the corresponding PPE items. We propose a novel and accurate approach that uses three components: a person detector, a body pose estimator and a classifier. Our novelty consists in using the pose estimator only at training time, to improve the prediction performance of the classifier. We modify the neural architecture of the classifier by adding a spatial attention mechanism, which is trained using supervision signal from the pose estimator. In this way, the classifier learns to focus on PPE items, using knowledge from the pose estimator with almost no computational overhead during inference.