论文标题

与随机互补性在不确定地形上的强大轨迹优化

Robust Trajectory Optimization over Uncertain Terrain with Stochastic Complementarity

论文作者

Drnach, Luke, Zhao, Ye

论文摘要

最近,具有富含接触的行为的轨迹优化已引起人们的注意,以产生不同的运动行为而没有预先指定的地面接触序列。但是,这些方法依赖于机器人动力学和地形的精确模型,并且容易受到不确定性的影响。最近的工作试图处理系统模型中的不确定性,但是很少有人研究了接触动力学的不确定性。在这项研究中,我们建模了来自地形和设计相应风险敏感目标的不确定性,在接触轨迹轨迹优化的框架下。特别是,我们使用概率分布从地形接触距离和摩擦系数中参数化不确定性,并提出了相应的预期剩余最小化成本设计方法。我们在三个简单的机器人示例中评估了我们的方法,包括一个腿部跳跃机器人,我们在模拟中基准了一个示例之一,以防止可靠的最坏情况解决方案。我们表明,我们的风险敏感方法会产生对地形扰动的强大接触式轨迹。此外,我们证明,随着地形模型变得更加确定,所产生的轨迹会融合到传统的,非稳定方法产生的轨迹。我们的研究标志着朝着完全稳健的接触式方法迈出的重要一步,适合在现实世界中部署机器人。

Trajectory optimization with contact-rich behaviors has recently gained attention for generating diverse locomotion behaviors without pre-specified ground contact sequences. However, these approaches rely on precise models of robot dynamics and the terrain and are susceptible to uncertainty. Recent works have attempted to handle uncertainties in the system model, but few have investigated uncertainty in contact dynamics. In this study, we model uncertainty stemming from the terrain and design corresponding risk-sensitive objectives under the framework of contact-implicit trajectory optimization. In particular, we parameterize uncertainties from the terrain contact distance and friction coefficients using probability distributions and propose a corresponding expected residual minimization cost design approach. We evaluate our method in three simple robotic examples, including a legged hopping robot, and we benchmark one of our examples in simulation against a robust worst-case solution. We show that our risk-sensitive method produces contact-averse trajectories that are robust to terrain perturbations. Moreover, we demonstrate that the resulting trajectories converge to those generated by a traditional, non-robust method as the terrain model becomes more certain. Our study marks an important step towards a fully robust, contact-implicit approach suitable for deploying robots on real-world terrain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源