论文标题

具有重力和热类似物的量子Groverian Geodesic路径

Quantum Groverian Geodesic Paths with Gravitational and Thermal Analogies

论文作者

Cafaro, Carlo, Felice, Domenico, Alsing, Paul M.

论文摘要

我们提出了量子状态矢量和量子概率幅度的Groverian Geodesics的统一分数衍生物。在第一种情况下,我们表明,归一化矢量的希尔伯特空间上的水平参数化的地理路径是由于希尔伯特空间射线流形的fubini-study指标所指定的长度的最小化而出现的。在第二种情况下,我们证明了通过最大程度地减少根据Fisher信息表达的长度而产生的概率幅度的大地途径。在这两种推导中,我们都发现地球方程是由简单的谐波振荡器(SHOS)描述的。但是,尽管在第一个派生中,振荡的频率与哈密顿系统的(恒定)能量分散成正比,而在第二个导数中,振荡的频率与(常数)Fisher信息的平方根成正比。有趣的是,通过将这两个频率设置为彼此相等,我们恢复了众所周知的Anandan-Aharonov关系,将哈密顿系统的进化速度与能量分散相关联。最后,在从量子设置过渡后,我们分别分析了在保守量的情况下分别分析引力和热力学起源的两种特定现象,我们讨论了SHO类型的大地运动运动的普遍性。

We present a unifying variational calculus derivation of Groverian geodesics for both quantum state vectors and quantum probability amplitudes. In the first case, we show that horizontal affinely parametrized geodesic paths on the Hilbert space of normalized vectors emerge from the minimization of the length specified by the Fubini-Study metric on the manifold of Hilbert space rays. In the second case, we demonstrate that geodesic paths for probability amplitudes arise by minimizing the length expressed in terms of the Fisher information. In both derivations, we find that geodesic equations are described by simple harmonic oscillators (SHOs). However, while in the first derivation the frequency of oscillations is proportional to the (constant) energy dispersion of the Hamiltonian system, in the second derivation the frequency of oscillations is proportional to the square-root of the (constant) Fisher information. Interestingly, by setting these two frequencies equal to each other, we recover the well-known Anandan-Aharonov relation linking the squared speed of evolution of an Hamiltonian system with its energy dispersion. Finally, upon transitioning away from the quantum setting, we discuss the universality of the emergence of geodesic motion of SHO type in the presence of conserved quantities by analyzing two specific phenomena of gravitational and thermodynamical origin, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源