论文标题

来自准体积,边缘,球体和拓扑弦分区功能的量子de Sitter Horizo​​n熵

Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions

论文作者

Anninos, Dionysios, Denef, Frederik, Law, Y. T. Albert, Sun, Zimo

论文摘要

在约束显微镜模型的前景中,我们计算了每个有效的量子重力的有效场理论的精确的单循环校正的DE Sitter熵(球形分区函数的对数),并具有任意自旋表示的粒子。在此过程中,我们将球形分区函数与准典型散装和欧几里得边缘分区函数的商相关联,该函数由编码可观察到的宇宙的整体和边缘光谱的字符积分给出。扩展散装字符将散装(纠缠)熵分解为准模式(准比特)贡献。对于以SL($ n $)Chern-Simons理论为例的3D高旋转重力,我们获得了全环的确切结果。除此之外,我们表明该理论具有De Sitter真空的指数较大的景观,其绝对值平方给出了拓扑弦分区函数的量子熵。对于通用的高旋转重力,形式主义简洁地关联了DS,广告$^\ pm $和保形结果。全息图在准级别的散装散装取消中显示。

Motivated by the prospect of constraining microscopic models, we calculate the exact one-loop corrected de Sitter entropy (the logarithm of the sphere partition function) for every effective field theory of quantum gravity, with particles in arbitrary spin representations. In doing so, we universally relate the sphere partition function to the quotient of a quasi-canonical bulk and a Euclidean edge partition function, given by integrals of characters encoding the bulk and edge spectrum of the observable universe. Expanding the bulk character splits the bulk (entanglement) entropy into quasinormal mode (quasiqubit) contributions. For 3D higher-spin gravity formulated as an sl($n$) Chern-Simons theory, we obtain all-loop exact results. Further to this, we show that the theory has an exponentially large landscape of de Sitter vacua with quantum entropy given by the absolute value squared of a topological string partition function. For generic higher-spin gravity, the formalism succinctly relates dS, AdS$^\pm$ and conformal results. Holography is exhibited in quasi-exact bulk-edge cancelation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源