论文标题

上下文集成的关系和供应预测的关系和供应预测

A Context Integrated Relational Spatio-Temporal Model for Demand and Supply Forecasting

论文作者

Chen, Hongjie, Rossi, Ryan A., Mahadik, Kanak, Eldardiry, Hoda

论文摘要

需求预测的传统方法仅集中于建模时间依赖性。但是,对时空数据的预测需要建模复杂的非线性关系和空间依赖性。此外,动态上下文信息可能会对需求值产生重大影响,因此需要捕获。例如,在自行车共享系统中,天气可能会影响自行车的使用情况。现有方法假定上下文影响是固定的。但是,我们注意到上下文影响会随着时间的流逝而发展。我们提出了一个新颖的上下文集成关系模型,上下文集成图神经网络(CIGNN),该模型利用时间,关系,空间和动态上下文依赖性来实现多步进的需求预测。我们的方法考虑了各种地理位置上的需求网络,并将网络表示为图。我们定义了一个需求图,其中节点代表需求时间序列和上下文图(每种类型上下文),其中节点代表上下文时间序列。假设各种环境发展并对需求波动产生动态影响,我们提出的CIGNN模型采用了一种融合机制,可以从所有可用类型的上下文信息中共同学习。据我们所知,这是将动态环境与图形神经网络集成到时空需求预测的第一种方法,从而提高了预测准确性。我们在两个现实世界数据集上介绍了经验结果,表明CIGNN在周期性和不规则的时间序列网络中始终优于最先进的基线。

Traditional methods for demand forecasting only focus on modeling the temporal dependency. However, forecasting on spatio-temporal data requires modeling of complex nonlinear relational and spatial dependencies. In addition, dynamic contextual information can have a significant impact on the demand values, and therefore needs to be captured. For example, in a bike-sharing system, bike usage can be impacted by weather. Existing methods assume the contextual impact is fixed. However, we note that the contextual impact evolves over time. We propose a novel context integrated relational model, Context Integrated Graph Neural Network (CIGNN), which leverages the temporal, relational, spatial, and dynamic contextual dependencies for multi-step ahead demand forecasting. Our approach considers the demand network over various geographical locations and represents the network as a graph. We define a demand graph, where nodes represent demand time-series, and context graphs (one for each type of context), where nodes represent contextual time-series. Assuming that various contexts evolve and have a dynamic impact on the fluctuation of demand, our proposed CIGNN model employs a fusion mechanism that jointly learns from all available types of contextual information. To the best of our knowledge, this is the first approach that integrates dynamic contexts with graph neural networks for spatio-temporal demand forecasting, thereby increasing prediction accuracy. We present empirical results on two real-world datasets, demonstrating that CIGNN consistently outperforms state-of-the-art baselines, in both periodic and irregular time-series networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源