论文标题

广义功能的临界平滑度

The Critical Smoothness of Generalized Functions

论文作者

Fageot, Julien, Ward, John Paul

论文摘要

对于每个集成性参数$ p \ in(0,\ infty] $,定期广义函数$ f $的关键平滑度,由$ s_f(p)$表示是$ f $ f $ s $ f $属于besov space $ b_ b_ b_ b_ p,p,p,p} s $(或其他类似函数)的clifteration的$ f $ s $ s $ s $ s $ s $ s $ s $ s primate vartility actution的临时效果的临时。 $ p $。当$ f $描述了广义周期性功能的空间时,我们的主要结果是所有可能的关键平滑度功能$ p \ mapsto s_f(p)$。

For each integrability parameter $p \in (0,\infty]$, the critical smoothness of a periodic generalized function $f$, denoted by $s_f(p)$ is the supremum over the smoothness parameters $s$ for which $f$ belongs to the Besov space $B_{p,p}^s$ (or other similar function spaces). This paper investigates the evolution of the critical smoothness with respect to the integrability parameter $p$. Our main result is a simple characterization of all the possible critical smoothness functions $p\mapsto s_f(p)$ when $f$ describes the space of generalized periodic functions. We moreover characterize the compressibility of generalized periodic functions in wavelet bases from the knowledge of their critical smoothness function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源