论文标题

词典学习具有张量完成的低级编码系数

Dictionary Learning with Low-rank Coding Coefficients for Tensor Completion

论文作者

Jiang, Tai-Xiang, Zhao, Xi-Le, Zhang, Hao, Ng, Michael K.

论文摘要

在本文中,我们提出了一个新颖的张量学习和编码模型,以完成三阶数据完成。我们的模型是从给定的观察值中学习数据自适应词典,并确定三阶张量管的编码系数。在完成过程中,我们最大程度地减少了包含编码系数的每个张量切片的低级别。通过与传统的预定义转换基础相比,提出的模型的优势是(i)可以根据给定的数据观察来学习字典,以便可以更适应性地和准确地构建基础,并且(ii)编码系数的低级别可以使字典特征的线性组合更有效。另外,我们开发了一种多块近端交替的最小化算法,用于求解这种张量学习和编码模型,并表明该算法生成的序列可以在全球范围内收敛到临界点。据报道,针对视频,高光谱图像和流量数据等真实数据集的广泛实验结果证明了这些优势,并显示了所提出的张量学习和编码方法的性能要比其他几个评估指标的其他张量完成方法要好得多。

In this paper, we propose a novel tensor learning and coding model for third-order data completion. Our model is to learn a data-adaptive dictionary from the given observations, and determine the coding coefficients of third-order tensor tubes. In the completion process, we minimize the low-rankness of each tensor slice containing the coding coefficients. By comparison with the traditional pre-defined transform basis, the advantages of the proposed model are that (i) the dictionary can be learned based on the given data observations so that the basis can be more adaptively and accurately constructed, and (ii) the low-rankness of the coding coefficients can allow the linear combination of dictionary features more effectively. Also we develop a multi-block proximal alternating minimization algorithm for solving such tensor learning and coding model, and show that the sequence generated by the algorithm can globally converge to a critical point. Extensive experimental results for real data sets such as videos, hyperspectral images, and traffic data are reported to demonstrate these advantages and show the performance of the proposed tensor learning and coding method is significantly better than the other tensor completion methods in terms of several evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源