论文标题
识别因果关系直接效果而没有无法测试的假设
Identification of causal direct-indirect effects without untestable assumptions
论文作者
论文摘要
在因果中介分析中,对现有因果直接或间接影响的识别需要不可测试的假设,在这种假设中,潜在的结果和潜在介体是独立的。本文定义了一种新的因果直接和间接效应,不需要不可测试的假设。我们表明,即使潜在的结果和潜在的介体是依赖的,而现有的自然直接或间接效应可能会发现伪造的效果,即使违反了不可测试的假设,因此所提出的措施是可以从观察到的数据中识别出的。
In causal mediation analysis, identification of existing causal direct or indirect effects requires untestable assumptions in which potential outcomes and potential mediators are independent. This paper defines a new causal direct and indirect effect that does not require the untestable assumptions. We show that the proposed measure is identifiable from the observed data, even if potential outcomes and potential mediators are dependent, while the existing natural direct or indirect effects may find a pseudo-indirect effect when the untestable assumptions are violated.