论文标题
重新访问PSR J1909 $ - $ 3744,带有15年高精度计时
A revisit of PSR J1909$-$3744 with 15-year high-precision timing
论文作者
论文摘要
我们报告了高精度的计时分析和对二元毫秒Pulsar的天体物理研究,PSR J1909 $ - $ 3744,这是由于过去十年来质量良好的数据的积累而动机。使用Nançay射电望远镜进行15年的观察,我们达到了大约100 ns的时序精度。我们通过使用宽带和子带模板匹配的方法来验证我们的时序结果来创建脉冲临时时间。与以前的研究相比,我们提高了轨道时期世俗变化的测量精度和预测的半轴轴。我们表明,这些变化都由脉冲星系统和太阳系barycenter之间的相对运动主导。此外,我们确定了脉冲星轨道上升节点的四种可能的解决方案,并测量了系统的精确动力学距离。使用我们的时序测量并发表了光学观察,我们使用恒星进化代码MESA研究了该系统的二进制历史,并根据WD年龄二分法范式的详细WD冷却讨论解决方案。我们确定了系统的3-D速度,并表明它在我们银河系中心围绕着高度偏心的轨道。此外,我们对系统建立了对偶极重力辐射的约束,鉴于脉冲星的质量,该系统与先前的研究互补。我们还以95%置信度的水平在95%的置信度下对参数化的纽顿后参数获得了新的限制,$α_1<2.1 \ times 10^{ - 5} $,比以前的最佳发表值更好,并通过更具体的方法实现。
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909$-$3744, motivated by the accumulation of data with well improved quality over the past decade. Using 15 years of observations with the Nançay Radio Telescope, we achieve a timing precision of approximately 100 ns. We verify our timing results by using both broad-band and sub-band template matching methods to create the pulse time-of-arrivals. Compared with previous studies, we improve the measurement precision of secular changes in orbital period and projected semi-major axis. We show that these variations are both dominated by the relative motion between the pulsar system and the solar system barycenter. Additionally, we identified four possible solutions to the ascending node of the pulsar orbit, and measured a precise kinetic distance of the system. Using our timing measurements and published optical observations, we investigate the binary history of this system using the stellar evolution code MESA, and discuss solutions based on detailed WD cooling at the edge of the WD age dichotomy paradigm. We determine the 3-D velocity of the system and show that it has been undergoing a highly eccentric orbit around the centre of our Galaxy. Furthermore, we set up a constraint over dipolar gravitational radiation with the system, which is complementary to previous studies given the mass of the pulsar. We also obtain a new limit on the parameterised post-Newtonian parameter, $α_1<2.1 \times 10^{-5}$ at 95 % confidence level, which is fractionally better than previous best published value and achieved with a more concrete method.