论文标题

德林菲尔德模块的扭转点的加洛伊斯标准

Galois criterion for torsion points of Drinfeld modules

论文作者

Chen, Chien-Hua

论文摘要

在本文中,我们制定了Lang提出的一个问题的Drinfeld模块类似物,并由Katz研究了Abelian品种在数字领域上存在理性点。给定最大的理想$ \ fl $ $ \ f_q [t] $,这个问题本质上询问,要提高$ \ f_q(t)$超过$ \ f_q(t)$的drinfeld模块$ ϕ $是否包含一个有理$ \ fl $ - torsion点,如果将$ copt $ \ f_q $ \ f_q [t y $ \ f_q [t]与Abelian品种类似,我们表明,如果德林菲尔德模块的排名为$ 2 $,则答案是积极的,但如果排名为$ 3 $,则答案为负。此外,对于排名$ 3 $ DRINFELD模块,我们将答案为正的情况分类。

In this paper, we formulate the Drinfeld module analogue of a question raised by Lang and studied by Katz on the existence of rational points on abelian varieties over number fields. Given a maximal ideal $\fl$ of $\F_q[T]$, the question essentially asks whether, up to isogeny, a Drinfeld module $ϕ$ over $\F_q(T)$ contains a rational $\fl$-torsion point if the reduction of $ϕ$ at almost all primes of $\F_q[T]$ contains a rational $\fl$-torsion point. Similar to the case of abelian varieties, we show that the answer is positive if the rank of the Drinfeld module is $2$, but negative if the rank is $3$. Moreover, for rank $3$ Drinfeld modules we classify those cases where the answer is positive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源