论文标题

在广义基本热力学关系中的二元对称性的出现和破坏

Emergence and Breaking of Duality Symmetry in Generalized Fundamental Thermodynamic Relations

论文作者

Lu, Zhiyue, Qian, Hong

论文摘要

热力学作为统计的限制行为被推广到任意系统,概率{\ it先验},其中热力学无限尺寸限制被多衡量限制所取代。 Massieu和Gibbs的熵之间的二元性对称性在无限重复的观测值的极限中产生,产生了Gibbs方程和山gibbs-Duhem方程(HGDE),作为双对。如果系统具有满足Callen假设的热力学极限,则熵是Eulerian功能,则丢失了对称性:HGDE将减少到Gibbs-Duhem方程。该理论为经典和纳米疗法动力学提供了脱离机械化的基础,并为从大数据中蒸馏出来的框架提供了一个框架,而没有基础细节。

Thermodynamics as limiting behaviors of statistics is generalized to arbitrary system with probability {\it a priori} where thermodynamic infinite-size limit is replaced by multiple-measurement limit. A duality symmetry between Massieu's and Gibbs' entropy arises in the limit of infinitely repeated observations, yielding the Gibbs equation and Hill-Gibbs-Duhem equation (HGDE) as dual pair. If a system has thermodynamic limit satisfying Callen's postulate, entropy being an Eulerian function, the symmetry is lost: the HGDE reduces to the Gibbs-Duhem equation. This theory provides a de-mechanized foundation for classical and nanothermodynamics and offers a framework for distilling emergence from large data, free from underlying details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源