论文标题
额外的滑轮和相互作用分解
Extra-fine sheaves and interaction decompositions
论文作者
论文摘要
我们在拓扑空间中介绍了原始的五链纸条的原始概念,以及一种变体(超淘汰),其在严格的积极程度中为此而消失。当拓扑空间是配备Alexandrov拓扑的部分有序集(POSET)时,我们提供了此类滑轮的表征。然后,我们将结果进一步专门用于矢量空间和注射图的某些滑轮,在这些载体空间和外观图中(本质上)等同于将捆的分解为直接的亚功能分解(称为相互作用分解),并且可以通过分析条件来表达。我们使用这些结果来计算当预设在集合函数上自由生成时,全局部分空间的维度,从而将经典计数公式概括为线性化边缘问题的解决方案数量(Kellerer和Matúš)。我们结束了与覆盖物与Poset的Topos共同体相关的čech的比较定理与Presheaf中的系数之间的比较,这也是Poset神经上的cosimimimplicial局部系统的共同体学。为此,我们在简单组合中对Cosimimplicial局部系统进行了详细的处理。这些附录呈现了预发,滑轮和Čech的同一个共同体,以及它们在边际问题上的应用。
We introduce an original notion of extra-fine sheaf on a topological space, and a variant (hyper-extra-fine) for which Čech cohomology in strictly positive degree vanishes. We provide a characterization of such sheaves when the topological space is a partially ordered set (poset) equipped with the Alexandrov topology. Then we further specialize our results to some sheaves of vector spaces and injective maps, where extra-fineness is (essentially) equivalent to the decomposition of the sheaf into a direct sum of subfunctors, known as interaction decomposition, and can be expressed by a sum-intersection condition. We use these results to compute the dimension of the space of global sections when the presheaves are freely generated over a functor of sets, generalizing classical counting formulae for the number of solutions of the linearized marginal problem (Kellerer and Matúš). We finish with a comparison theorem between the Čech cohomology associated to a covering and the topos cohomology of the poset with coefficients in the presheaf, which is also the cohomology of a cosimplicial local system over the nerve of the poset. For that, we give a detailed treatment of cosimplicial local systems on simplicial sets. The appendixes present presheaves, sheaves and Čech cohomology, and their application to the marginal problem.