论文标题

COVID-19的孵育时间分布的估计

Estimation of the incubation time distribution for COVID-19

论文作者

Groeneboom, Piet

论文摘要

我们考虑对Covid-19的孵育时间分布的平稳估计,与国家公共卫生与环境研究所(荷兰:RIVM)的研究人员的调查有关,来自武汉:Backer等人(2020年)。平滑非参数方法的优势W.R.T.讨论了使用三个参数分布(Weibull,Log-Normal和Gammal和Gamma)(2020)中的参数方法。 结果表明,在模型的连续版本中,密度平滑估计的典型收敛速率为$ n^{2/7} $,其中$ n $是样本量。 (非平滑)非参数最大似然估计量(MLE)本身是由迭代凸次小型算法计算的(Groeneboom and Jongbloed(2014))。所有计算均以Groeneboom(2020)中的{\ tt r}脚本提供。

We consider smooth nonparametric estimation of the incubation time distribution of COVID-19, in connection with the investigation of researchers from the National Institute for Public Health and the Environment (Dutch: RIVM) of 88 travelers from Wuhan: Backer et al (2020). The advantages of the smooth nonparametric approach w.r.t. the parametric approach, using three parametric distributions (Weibull, log-normal and gamma) in Backer et al (2020) is discussed. It is shown that the typical rate of convergence of the smooth estimate of the density is $n^{2/7}$ in a continuous version of the model, where $n$ is the sample size. The (non-smoothed) nonparametric maximum likelihood estimator (MLE) itself is computed by the iterative convex minorant algorithm (Groeneboom and Jongbloed (2014)). All computations are available as {\tt R} scripts in Groeneboom (2020).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源