论文标题

同质类型空间上加权莫雷空间上的换向器的注释

A note on commutators on weighted Morrey spaces on spaces of homogeneous type

论文作者

Gong, Ruming, Li, Ji, Pozzi, Elodie, Vempati, Manasa N.

论文摘要

在本文中,我们研究了Coifman and Weiss的意义上,研究Calderón-Zygmund运营商$ t $calderón-Zygmund操作员$ t $的界限和紧凑性特征。更确切地说,我们表明换向器$ [B,T] $在加权的Morrey空间上$l_Ω^{p,κ}(x)$($κ\ in(0,1),(0,1),ω\ in a_ {p}(p}(x)(x),1 <p <\ infty $),并且仅在$ b $ in the the BMO中。此外,换向器$ [b,t] $在加权的莫雷空间上是紧凑的$l_Ω^{p,κ}(x)$($κ\ in(0,1),ω\ in a_ {p}(x)(x),1 <p <\ infty $,如果$ b $在vmo space中。

In this paper we study the boundedness and compactness characterizations of the commutator of Calderón-Zygmund operators $T$ on spaces of homogeneous type $(X,d,μ)$ in the sense of Coifman and Weiss. More precisely, We show that the commutator $[b, T]$ is bounded on weighted Morrey space $L_ω^{p,κ}(X)$ ($κ\in(0,1), ω\in A_{p}(X), 1<p<\infty$) if and only if $b$ is in the BMO space. Moreover, the commutator $[b, T]$ is compact on weighted Morrey space $L_ω^{p,κ}(X)$ ($κ\in(0,1), ω\in A_{p}(X), 1<p<\infty$) if and only if $b$ is in the VMO space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源