论文标题

Margulis-Smilga空间的同一镜头,用于真实分裂半元素lie群的不可还原表示

Isospectrality of Margulis-Smilga spacetimes for irreducible representations of real split semisimple Lie groups

论文作者

Ghosh, Sourav

论文摘要

在本文中,我们查看了带有微不足道的中心和忠实的不可记述的代数表示$ \ nathtt {r} $ of $ \ mathsf {g mathsf {g} $在某些矢量空间$ \ mathsf {v} $中的extrients serifient和siveriation,siverage serag和sivernage of afloge serag和siverrient,我们会介绍一个sefient-nefient-aftermant,我们会介绍实际的serfient,否则seragient和spocor, $ \ mathsf {psl}(n,\ mathbb {r})$的$)。 我们表明,存在$(g,x)\ in \ Mathsf {g} \ ltimes_ \ Mathtt {r} \ Mathsf {v} $的$(g,x)\ in Margulis forpariants制成的多项式。此外,我们表明,$ \ mathsf {g} \ ltimes_ \ Mathtt {r} \ Mathsf {V} $的任何Zariski密集生成的子组,对于非遗相元素的线性部分是loxodromic的线性部分,与Margulis Invariant相关。特别是,我们表明Margulis- Smilga的空间也是异常的僵化。

In this article, we look at real split semisimple algebraic groups $\mathsf{G}$ with trivial center and faithful irreducible algebraic representations $\mathtt{R}$ of $\mathsf{G}$ on some vector space $\mathsf{V}$ which admit zero as a weight and which are self-contragredient (for example, adjoint representation of $\mathsf{PSL}(n,\mathbb{R})$). We show that, there exist polynomials made out of Margulis invariants of $(g,X)\in\mathsf{G}\ltimes_\mathtt{R}\mathsf{V}$ which are also rational expressions in $(g,X)$. Moreover, we show that any Zariski dense finitely generated subgroup of $\mathsf{G}\ltimes_\mathtt{R}\mathsf{V}$, for which the linear parts of the non-identity elements are loxodromic, is isospectrally rigid with respect to the Margulis invariants. In particular, we show that Margulis--Smilga spacetimes are isospectrally rigid too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源