论文标题

Huber回归的统计学习评估

A Statistical Learning Assessment of Huber Regression

论文作者

Feng, Yunlong, Wu, Qiang

论文摘要

作为强大统计的胜利和里程碑之一,Huber回归在健壮的推论和估计中起着重要作用。它还在机器学习中找到了各种各样的应用。在参数设置中,它已经进行了广泛的研究。但是,在通常以非参数方式学习函数的统计学习环境中,仍然缺乏对Huber回归估计器如何学习条件均值函数以及为什么在没有光尾噪声假设的情况下起作用的理论理解。为了解决这些基本问题,我们从统计学习观点对Huber回归进行了评估。首先,我们表明,通常在机器学习中追求的Huber回归估计器的通常风险一致性属性不能保证其在平均回归中的学习性。其次,我们认为应以自适应方式实施Huber回归,以执行平均回归,这意味着人们需要根据样本量和噪声的力矩条件来调整比例参数。第三,通过自适应选择比例参数,我们证明了Huber回归估计器可以是渐近平均回归,在$(1+ε)$ - 时刻条件下校准($ε> 0 $)。最后但并非最不重要的一点是,在同一时刻条件下,我们确定了Huber回归估计量的几乎确定的收敛速率。请注意,$(1+ε)$ - 时刻条件可容纳响应变量具有无限差异的特殊情况,因此既定的收敛速率证明了Huber回归估计器的鲁棒性特征是合理的。从上述意义上讲,本研究提供了HUBER回归估计量的系统统计学习评估,并从理论观点上证明了它们的鲁棒性。

As one of the triumphs and milestones of robust statistics, Huber regression plays an important role in robust inference and estimation. It has also been finding a great variety of applications in machine learning. In a parametric setup, it has been extensively studied. However, in the statistical learning context where a function is typically learned in a nonparametric way, there is still a lack of theoretical understanding of how Huber regression estimators learn the conditional mean function and why it works in the absence of light-tailed noise assumptions. To address these fundamental questions, we conduct an assessment of Huber regression from a statistical learning viewpoint. First, we show that the usual risk consistency property of Huber regression estimators, which is usually pursued in machine learning, cannot guarantee their learnability in mean regression. Second, we argue that Huber regression should be implemented in an adaptive way to perform mean regression, implying that one needs to tune the scale parameter in accordance with the sample size and the moment condition of the noise. Third, with an adaptive choice of the scale parameter, we demonstrate that Huber regression estimators can be asymptotic mean regression calibrated under $(1+ε)$-moment conditions ($ε>0$). Last but not least, under the same moment conditions, we establish almost sure convergence rates for Huber regression estimators. Note that the $(1+ε)$-moment conditions accommodate the special case where the response variable possesses infinite variance and so the established convergence rates justify the robustness feature of Huber regression estimators. In the above senses, the present study provides a systematic statistical learning assessment of Huber regression estimators and justifies their merits in terms of robustness from a theoretical viewpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源