论文标题
图形的内部曲线,Ricci-Olivier曲率和体积的增长
Inner-Outer Curvatures, Ricci-Ollivier Curvature and Volume Growth of Graphs
论文作者
论文摘要
我们关注图上不同曲率概念的研究。我们表明,如果图形比模型图具有更强的内部曲率生长,那么它的体积增长也更快。我们还研究了体积增长与其他类型的曲率的关系,例如ollivier-Ricci曲率。
We are concerned with the study of different notions of curvature on graphs. We show that if a graph has stronger inner-outer curvature growth than a model graph, then it has faster volume growth too. We also study the relationhips of volume growth with other kind of curvatures, such as the Ollivier-Ricci curvature.