论文标题
通过绿色的功能方法和应用程序来发动电势
Kernels for noninteracting fermions via a Green's function approach with applications to step potentials
论文作者
论文摘要
$ n $非互动无旋转费的量子相关性可以用称为内核的两点函数表示。在这里,我们开发了一种一般而紧凑的方法,用于根据相应的单个粒子schrödinger方程的绿色功能来计算一般捕获电势中的内核。为了平滑电势,该方法允许对陷阱的大块部分中的密度和正弦内核的局部密度近似的简单替代推导。它还恢复了边缘所谓的{\ em Airy Gas}的密度和内核。该方法允许当电势具有奇异部分的空间变化时,可以分析基态的量子相关性。对于高度$ v_0 $的平方步骤屏障,我们为密度和内核提供了明确的表达式。对于大型费米能量$μ> v_0 $,它描述了费米气体中不同密度的两个区域之间的插值,每个区域用不同的正弦核描述。当$μ= v_0 $时,特别感兴趣的是平方井潜力的{\ em关键点}。在这种关键情况下,虽然步骤潜力的下部有宏观数量的费米子,但肩膀上只有一个有限的$ o(1)$ fermions数量,而且此数字独立于$μ$。特别是,密度表现出代数衰减$ \ sim 1/x^2 $,其中$ x $是距跳跃的距离。此外,我们表明$μ= v_0 $的临界行为与屏障形状相对于障碍物表现出普遍性。这是通过精确的解决方案(i)通过确切的屏障(木材 - 撒克逊电位)和(ii)建立的(i)通过建立核的大距离行为与单粒子波功能的散射幅度之间的一般关系来确定的。
The quantum correlations of $N$ noninteracting spinless fermions in their ground state can be expressed in terms of a two-point function called the kernel. Here we develop a general and compact method for computing the kernel in a general trapping potential in terms of the Green's function for the corresponding single particle Schrödinger equation. For smooth potentials the method allows a simple alternative derivation of the local density approximation for the density and of the sine kernel in the bulk part of the trap in the large $N$ limit. It also recovers the density and the kernel of the so-called {\em Airy gas} at the edge. This method allows to analyse the quantum correlations in the ground state when the potential has a singular part with a fast variation in space. For the square step barrier of height $V_0$, we derive explicit expressions for the density and for the kernel. For large Fermi energy $μ>V_0$ it describes the interpolation between two regions of different densities in a Fermi gas, each described by a different sine kernel. Of particular interest is the {\em critical point} of the square well potential when $μ=V_0$. In this critical case, while there is a macroscopic number of fermions in the lower part of the step potential, there is only a finite $O(1)$ number of fermions on the shoulder, and moreover this number is independent of $μ$. In particular, the density exhibits an algebraic decay $\sim 1/x^2$, where $x$ is the distance from the jump. Furthermore, we show that the critical behaviour around $μ= V_0$ exhibits universality with respect with the shape of the barrier. This is established (i) by an exact solution for a smooth barrier (the Woods-Saxon potential) and (ii) by establishing a general relation between the large distance behavior of the kernel and the scattering amplitudes of the single-particle wave-function.