论文标题
在$ _2 $(SE $ _ {1-x} $ TE $ _X $)中进行探索$ _ 3 $合金作为光伏材料
Exploring In$_2$(Se$_{1-x}$Te$_x$)$_3$ alloys as photovoltaic materials
论文作者
论文摘要
在$ _2 $ _2 $ SE $ _3 $中,带有空间组的三维(3D)六边形晶体结构$ p6_1 $($γ$ -in $ _2 $ _2 $ se $ _3 $)具有$ \ sim $ 1.8 ev的直接带隙,并具有高吸收系数,并具有高度吸收系数,使其成为opotoelectrons的有益的半束缚材料。合并TE允许调整频带间隙,为设备设计增加了灵活性并扩展了应用程序范围。在这里,我们报告了$γ$ -in $ _2 $ se $ _3 $薄膜的增长和表征,以及混合密度功能理论计算的结果,以评估$γ$ -in $ _2 $ _2 $ _2 $ se $ _3 $ _3 $和$γ$和$γ$ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _ {1- $ _ $ _ {1- $ _ $ _ {1- $ __ $ _ {1- $ _x $ _ {1- $ __的电子和光学特性。对于$γ$ -in $ _2 $ _2 $ _3 $,计算出的带隙为1.84 eV,与吸收光谱的数据非常吻合,并且发现吸收系数与直接频段GAP GAP GAP常规IIII-V和II-VI半导体的吸收系数高。以$γ$ -in $ _2 $(SE $ _ {1-X} $ TE $ _X $)$ _ 3 $ ALLOYS的形式合并TE形式,是一种有效的方法,可以将频段间隙从1.84 ev降低到1.23 ev,从而涵盖Solar Cells的最佳频段隙范围。 We also discuss band gap bowing and mixing enthalpies, aiming at adding $γ$-In$_2$Se$_3$ and $γ$-In$_2$(Se$_{1-x}$Te$_x$)$_3$ alloys to the available toolbox of materials for solar cells and other optoelectronic devices.
In$_2$Se$_3$ in the three-dimensional (3D) hexagonal crystal structure with space group $P6_1$ ($γ$-In$_2$Se$_3$) has a direct band gap of $\sim$1.8 eV and high absorption coefficient, making it a promising semiconductor material for optoelectronics. Incorporating Te allows for tuning the band gap, adding flexibility to device design and extending the application range. Here we report the growth and characterization of $γ$-In$_2$Se$_3$ thin films, and results of hybrid density functional theory calculations to assess the electronic and optical properties of $γ$-In$_2$Se$_3$ and $γ$-In$_2$(Se$_{1-x}$Te$_x$)$_3$ alloys. The calculated band gap of 1.84 eV for $γ$-In$_2$Se$_3$ is in good agreement with data from the absorption spectrum, and the absorption coefficient is found to be as high as that of direct band gap conventional III-V and II-VI semiconductors. Incorporation of Te in the form of $γ$-In$_2$(Se$_{1-x}$Te$_x$)$_3$ alloys is an effective way to tune the band gap from 1.84 eV down to 1.23 eV, thus covering the optimal band gap range for solar cells. We also discuss band gap bowing and mixing enthalpies, aiming at adding $γ$-In$_2$Se$_3$ and $γ$-In$_2$(Se$_{1-x}$Te$_x$)$_3$ alloys to the available toolbox of materials for solar cells and other optoelectronic devices.