论文标题

不稳定的冷凝水及其孤子模型中具有理性曲线的流氓波浪

Rogue waves with rational profiles in unstable condensate and its solitonic model

论文作者

Agafontsev, D. S., Gelash, A. A.

论文摘要

在这份简短的报告中,我们从数值上研究了(i)在其长期统计固定状态下(II)代表该状态的孤子模型的BONDINE统计固定状态下(ii)在其长期统计固定状态下自发出现[Gelash等人,PRL 123,234102(2019)]。将我们的分析集中在最大的流氓波的队列上,我们发现它们在两个系统中实际上相同的动力学和统计特性,这强烈表明,对于调节不稳定性案例,流氓波形的主要机制是多索顿相互作用。此外,我们证明了大多数最大的流氓波是通过第二阶的幅度尺度尺度的理性通气解决方案在空间和时间上同时近似的。

In this brief report we study numerically the spontaneous emergence of rogue waves in (i) modulationally unstable plane wave at its long-time statistically stationary state and (ii) bound-state multi-soliton solutions representing the solitonic model of this state [Gelash et al, PRL 123, 234102 (2019)]. Focusing our analysis on the cohort of the largest rogue waves, we find their practically identical dynamical and statistical properties for both systems, that strongly suggests that the main mechanism of rogue wave formation for the modulational instability case is multi-soliton interaction. Additionally, we demonstrate that most of the largest rogue waves are very well approximated -- simultaneously in space and in time -- by the amplitude-scaled rational breather solution of the second order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源