论文标题

较低$ n $ - 加权的RICCI曲率与$ \ varepsilon $ range and-range and Exuncement indevexity intopies

Lower $N$-weighted Ricci curvature bound with $\varepsilon$-range and displacement convexity of entropies

论文作者

Kuwae, Kazuhiro, Sakurai, Yohei

论文摘要

In the present article, we provide a characterization of a lower $N$-weighted Ricci curvature bound for $N \in ]-\infty,1]\cup[n,+\infty]$ with $\varepsilon$-range introduced by Lu-Minguzzi-Ohta in terms of a convexity of entropies over Wasserstein space.我们进一步得出了各种插值不平等和功能不平等。

In the present article, we provide a characterization of a lower $N$-weighted Ricci curvature bound for $N \in ]-\infty,1]\cup[n,+\infty]$ with $\varepsilon$-range introduced by Lu-Minguzzi-Ohta in terms of a convexity of entropies over Wasserstein space. We further derive various interpolation inequalities and functional inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源