论文标题

在几乎关键空间中的二次衍生物非线性schrödinger方程系统的适应性

Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces

论文作者

Hirayama, Hiroyuki, Kinoshita, Shinya, Okamoto, Mamoru

论文摘要

在本文中,我们考虑了Colin和Colin(2004)引入的二次衍生物非线性schrödinger方程系统的库奇问题。我们确定一个几乎最佳的Sobolev规律性,其中存在库奇问题的平滑流量图,这是对缩放临界案例的期望。该结果涵盖了第一和第二作者的论文(2014,2019)的差距。

In this paper, we consider the Cauchy problem of the system of quadratic derivative nonlinear Schrödinger equations introduced by Colin and Colin (2004). We determine an almost optimal Sobolev regularity where the smooth flow map of the Cauchy problem exists, expect for the scaling critical case. This result covers a gap left open in papers of the first and second authors (2014, 2019).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源