论文标题

加热或不加热:时间结晶度和有限尺寸的效果

To heat or not to heat: time crystallinity and finite-size effects in clean Floquet systems

论文作者

Pizzi, Andrea, Malz, Daniel, De Tomasi, Giuseppe, Knolle, Johannes, Nunnenkamp, Andreas

论文摘要

一个基石的假设是,大多数关于离散时间晶体的文献都依赖于均质的浮雕系统通常会加热到无限的无限温度状态,这一期望激发了该领域的研究人员,主要集中于多体局部系统。但是,一些作品表明,时间结晶度的标准诊断同样适用于没有混乱的清洁设置。这一事实提出了一个问题,即是否可以避免最初预期的加热均匀的离散时间晶体。我们研究了具有短距离相互作用的局部和均匀模型,我们澄清了这两个情况之间的关键差异。一方面,我们仔细的缩放分析证实,在热力学极限和与局部离散时间晶体相比,同质系统确实加热了。另一方面,我们表明,由于使人联想到量子疤痕的机制,有限大小的同质系统仍然可以表现出非常清晰的时间结晶度的签名。实际上,次谐波响应可以持续存在于比起破坏术语所设定的响应的时间尺度,而热化可能仅在非常大的系统尺寸(例如数百次旋转)下发生。除了阐明无障碍系统中加热的出现外,我们的工作还引起了有限尺寸均匀系统的关注点,作为实施非平衡物理学实施的主要候选者。

A cornerstone assumption that most literature on discrete time crystals has relied on is that homogeneous Floquet systems generally heat to a featureless infinite temperature state, an expectation that motivated researchers in the field to mostly focus on many-body localized systems. Some works have however shown that the standard diagnostics for time crystallinity apply equally well to clean settings without disorder. This fact raises the question whether an homogeneous discrete time crystal is possible in which the originally expected heating is evaded. Studying both a localized and an homogeneous model with short-range interactions, we clarify this issue showing explicitly the key differences between the two cases. On the one hand, our careful scaling analysis confirms that, in the thermodynamic limit and in contrast to localized discrete time crystals, homogeneous systems indeed heat. On the other hand, we show that, thanks to a mechanism reminiscent of quantum scars, finite-size homogeneous systems can still exhibit very crisp signatures of time crystallinity. A subharmonic response can in fact persist over timescales that are much larger than those set by the integrability-breaking terms, with thermalization possibly occurring only at very large system sizes (e.g., of hundreds of spins). Beyond clarifying the emergence of heating in disorder-free systems, our work casts a spotlight on finite-size homogeneous systems as prime candidates for the experimental implementation of nontrivial out-of-equilibrium physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源