论文标题
稀疏的伯努利矩阵等级
Rank of Sparse Bernoulli Matrices
论文作者
论文摘要
令$ a_n $为$ n \ times n $随机矩阵,带有i.i.d bernoulli($ p $)条目。对于固定的正整数$β$,假设$ p $满足$$ \ frac {\ log(n)} {n} \ le p \ le p \ le p \ lec_β$$,其中$c_β\ in(0,1/2)$是$β$ - 依赖性。对于$ t \ ge 0 $,$$ \ mathbb {p} \ left \ {s_ {n-β + 1}(a)(a)\ le t n^{ - 2β + \ mathfrak {n}(n}(1)}(1)}(1)}(pn)(pn)^{ - 7} \ Mathbb {p} \ bigG \ {\ mbox {$β$行还是$β$ colums $ a_n $等于$ \ vec {0} $} $} \ bigg \}。 $$
Let $ A_n $ be an $n \times n$ random matrix with i.i.d Bernoulli($p$) entries. For a fixed positive integer $β$, suppose $p$ satisfies $$ \frac{ \log(n) }{ n } \le p \le c_β$$ where $c_β\in ( 0, 1/2 )$ is a $β$-dependentvalue. For $t \ge 0$, $$ \mathbb{P} \left\{ s_{ n - β+ 1}(A) \le t n^{-2β+ \mathfrak{n}(1) }(pn)^{-7} \right\} = t + ( 1 + o_\mathfrak{n}(1) ) \mathbb{P} \bigg\{ \mbox{either $β$ rows or $β$ columns of $A_n$ equal $\vec{0}$} \bigg\}. $$